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Abstract

We explore the Gene Ontology as a knowledge source for natural language process-
ing applications in the biology domain. Using rules based on text parallelism, text
insertion and modification relations applied to the hierarchical relations in the GO,
we infer a network of lexical semantic relations implicit in the GO. The analysis of
this network indicates that it contains significant information which can be used to
augment the existing GO with the aim of constructing a broader knowledge resource
for the biology domain, as well as to validate the relations in the GO.

1 Introduction

It is argued by Schulze-Kremer [7] that an ontology is a means to enable consistent use of
concepts and terminology in different databases by providing a common set of concepts in
which the semantic relations between the concepts are clearly specified. These properties
of an ontology also make it attractive for use in a natural language processing (NLP) ap-
plication, where there is a critical need to manage lexical (terminological) resources in a
manner supporting representation of syntactic and semantic constraints on lexical use. In
domains which contain much highly specific terminology, such as the biological domain, it
is often a daunting task to construct such lexical resources. We turn, therefore, to existing
terminological and ontological resources for the domain.

The Gene Ontology (GO, http://www.geneontology.org) [1] is a natural resource to con-
sider using in the context of a NLP application in the biological domain. It is a sizeable,
curated resource aiming to serve as a resource for consistent terminological use. It is, at core,
a controlled vocabulary, but its real utility comes from the relationships specified between
its vocabulary terms. The “is-a” and “part-of” hierarchies that exist in the GO not only
contextualize individual terms, but provide a semantic grounding for those terms that can
enable precise analysis of the meaning conveyed by those terms in relevant text sources.
Despite identification of several difficulties with the GO as a formal ontological object [10],
it is a valuable knowledge resource.

In this paper, we discuss explorations we have made into using the Gene Ontology as
a source of lexical semantic knowledge for a text processing application in the biological



domain. The target use for the resulting lexicon is a prototype system, currently under de-
velopment, that aims to extract regulatory relationships from biological text [6], and which
depends on the existence of domain-specific lexical resources. While our customer has sup-
plied some lists of terms that are associated with particular semantic types, these lists are
invariably incomplete and exist independently of any domain ontology. We therefore look
to the GO as a source of richer semantic data for lexical resources, specifically investigating
its potential as a datasource enabling the incorporation of semantic generalizations into our
NLP system. The work we present is complementary to the work of McCray et al [4] and
Ogren et al [5], as we will discuss below, and is an elaboration of the work presented in [9].

2 Evidence of the Value of the GO for Text Processing

McCray et al [4] and Verspoor et al [9] explore the premise of using the GO in the context of
a NLP application. McCray et al did an analysis of the occurrence of GO node labels (terms)
with a large set of Medline abstracts (over 400,000), and found that 35% of the full GO node
labels occurred in their corpus. The low percentage, 6%, of full GO node labels found by
Verspoor et al in their, significantly smaller (9,336 Medline abstracts) corpus stands in stark
constrast to this figure, and indicates the need for a sufficiently large corpus when searching
for examples of terminology usage.

However, neither figure indicates high coverage of the corpus, precluding extensive direct
use of the GO as a source of semantic information.! As such, Verspoor et al turned to
an investigation of the overlap of individual words in GO node labels with the corpus. It
was found that the words in the GO had good coverage of corpus words in the high- and
middle-frequency ranges (above 63% for the high-frequency words, even in the small corpus
investigated) indicating that for many of the terms we are likely to encounter regularly as we
process domain texts, the GO may be able to provide a semantic grounding, if we are able
to harness the semantics in the GO at the level of individual words rather than the full GO
terms on nodes. This shift in focus to the level of individual words is further warranted based
on McCray et al’s results on the overlap of GO terms with the SPECIALIST lexicon in the
Unified Medical Language System (UMLS) developed by the National Library of Medicine,
showing only 9% of full GO terms occuring in that lexicon.

3 Inferring Lexical Relations

To find the implicit lexical relations which exist in the GO, we pursued a strategy of reasoning
upon the ontological relations represented in the GO in order to establish ontological relations
among smaller terms. Specifically, relations between heads of phrases are inferred from the
relation between the phrases as a whole. We wish to evaluate the extent to which relations
in the GO can be exploited in establishing relations between individual terms in the lexicon.

3.1 Inference Rules

Currently, our reasoning strategy for inducing lexical semantic relations from the GO utilizes
three simple rules. These are not intended to capture the full range of lexical semantic

Werspoor et al [9] define the direct use of the GO as directly utilizing the hierarchical relations in the
GO for subsumption checking between individual (often multi-word) terms.
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relations that might be induced from the GO, but rather are a first attempt in exploring
whether there are meaningful relations that can be induced at all.

1. Text Parallelism. This rule attempts to infer an individual lexical relation from a
recognized parallelism between phrases where there is some textual overlap between
words. See Figure 1. For instance, from the GO relation “lipoprotein metabolism isa
protein metabolism” we deduce “lipoprotein isa protein”; from “lipoprotein biosynthe-
sis #sa lipoprotein metabolism” we deduce “biosynthesis isa metabolism”.

2. Insertion. This rule handles the case in which a word (or words) are inserted in
the middle of a term, creating a child term as a specialization of a parent term. See
Figure 2. We have implemented the rule to allow grouping to the right, based on
the right-branching structure of English. While this grouping will not always reflect
the most intuitive structure of a phrase, in the context of the GO this seems to be
more common than a left-branching structure and without implementing full parsing
we need to make a (somewhat arbitrary) choice. When this rule is applied, the GO
relation “adult feeding behavior isa adult behavior” results in the inference “feeding
behavior isa behavior”; from “chemosensory jump behavior isa chemosensory behavior”
we deduce “jump behavior #sa behavior”

3. Modifier. This rule handles the case in which one term is a specialization of the other
through the introduction of a pre- or post-modifier. See Figure 3.

In this case, the rule disallows an inference, following from the recognition that the the
modifiers generally modify the entire phrase, and any relation at the level of individual
lexical item doesn’t make sense. For instance, there is no clear lexical relation to be
inferred from “positive gravitactic behavior isa gravitactic behavior” or “larval feeding
behavior (sensu insecta) isa larval feeding behavior”. Inferring “positive gravitactic isa
gravitactic” or “behavior (sensu insecta) isa behavior” would not accurately capture
the semantics of the original relation. However, it is not the case that the observation
of these modification relations in the GO is not useful for analysis of the GO; in fact it
is precisely these relations which Ogren et al [5] draw on to infer semantic constraints
on what they call derivational phrases. We will discuss this in Section 5.
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Figure 4: Mappings from the GO to a lexical semantic network

3.2 Relations Inferred

These rules can be applied to each parent-child pair in the GO, giving us a set of additional
parent-child pairs that can be integrated to form a lexical semantic network. Figure 4
illustrates how these lexical semantic inferences can be linked via the terms they involve to
the GO.

In applying these rules, we generated additional parent-child pairs for 9,574 out of 16,849
parent-child pairs in the GO (57%).? This corresponds to 6,364 unique parent-child relations.
The top-ranking relations are shown in Table 1, along with the number of times the relation
was inferred. We believe that these reflect some fundamental relations; these can form the
starting point for a domain ontology at the lexical level as well as the phrasal level. Some of
these relations do correspond to existing parent-child pairs in the GO (such as the first two
in the table, which correspond to generic physiological processes), but others do not, such
as the relationship between RNA, and tRNA, mRNA, rRNA, and snRNA. Overall, only 70
of the 6,364 generated relations already existed in the GO; in Table 1 all but the first two
are new parent-child relations not found in the GO.

Of the 6,589 unique node labels in the set of parent-child relations induced, nearly half
(3,270) do not exist in the GO as node labels (there are 12,881 unique node labels in the
set of original parent-child relations from the GO that we worked with). This indicates
clearly that we have generated relations involving entities not provided any explicit semantic
grounding in the GO. From these figures, we can conclude that the relations inferred through
our reasoning process capture information that does not exist explicitly in the GO, and
therefore is potentially valuable new information.

2Note that the figures we report in this paper are different from the results reported in [9] due to an error
in the scripts used for the previous results.



Table 1: Lexical semantic relations induced from GO
581 | biosynthesis isa metabolism

577 | catabolism isa metabolism

44 | receptor isa binding

38 | deoxyribonucleoside isa nucleoside

35 | ribonucleoside isa nucleoside

33 | permease isa transporter

27 | Saccharomyces isa Fungi

22 | porter isa transporter

15 | oxidation isa metabolism
14 | tRNA isa RNA
14 | inhibitor isa regulator

13 | ribonucleotide isa nucleotide

11 | proliferation isa activation

11 | differentiation isa activation

11 | deoxyribonucleotide isa nucleotide
10 | rRNA isa RNA

10 | mRNA isa RNA

9 | snRNA isa RNA

8 | modification isa metabolism

8

methylation isa modification

3.3 A network of relations

We combined the inferred parent-child relationships into a network, in order to get a sense
of the structure of the graph resulting from the inference process. Using the Pajek network
visualization tool [2], we found the network too large to allow for significant manual analysis.
However, with Pajek we were able to reduce the full network to a more manageable hierarchy.
While this reduction loses some information (for instance, cycles and nodes with multiple
parents are removed), it helped us to explore basic properties of the graph structure. The
generated hierarchy consists of a forest of trees, and contains 5,447 of the original 6,364
relations. The most salient property of this hierarchy is that the vast majority of the inferred
relations do not embed within other inferred relations. There are only 391 nodes which are
both a parent and a child. As such, there are many trees of length 2. Specifically, there are
773 trees in the generated hierarchy, of which 669 have length 2 and 69 length 3. The root
covering the largest number of nodes is “activity”, with 1,149 descendants at a maximum
depth of 4. The deepest tree in the hierarchy has depth 10, rooted at “biosynthesis”. This
can be compared to the structure of the GO itself, which Joslyn et al [3] reports to have a
maximum chain length of 16, including the top “Gene Ontology” root node. The network
we have inferred is significantly flatter than the GO, as might be expected given that the
terms involved are structurally simpler (and shorter) than those occurring in the GO, since
they have been derived from portions of the original GO terms.

Figure 5 shows the tree in the induced lexical semantic hierarchy with depth 9, the
second deepest tree in the collection. This tree gives a sense of the upper bound of the
ontological complexity that can be expected through application of our current reasoning
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Figure 5: The second deepest tree in the induced hierarchy

Table 2: The children of “enzyme”

transposase transferase ribonuclease

proteasome protease phospholipase

phosphatase pectinesterase | oxidoreductase

MAPK lyase 7,8-dihydro-8-oxoguanine-triphosphatase
kinase isomerase integrase

hydrolase helicase GTPase

diazepam-binding | cyclase chaperone

caspase ATPase ATPase stimulator activator
alpha-amylase aromatase ligase

strategy. Table 2 shows the children rooted at “enzyme”, which is a flat tree. This list was
given to a domain expert, who rejected “diazepam-binding” as a valid child of “enzyme”,3
questioned the inclusion of “proteasome”, and accepted the remaining 25. So while the
results of the inferences are not perfect, and the full set of inferences would need to be
validated before integration with the GO itself, this example does show the potential value
of the approach: we have identified a concept, “enzyme”, which does not exist in the GO
as an individual node, and we have been able to provide it with some semantic grounding,
specifically a (partial) listing of the kinds of entities that are enzymes. Even such flat trees
can be extremely valuable in supporting generalizations, in particular if a concept relates
many entities, as in this case.

3This relation was inferred from the GO relation “diazepam-binding inhibitor activity isa enzyme inhibitor
activity”. If the inference is invalid, we might have to question the source GO relation as well, at least to
understand the intended interpretation of the relation.



Table 3: Relations in the GO leading to cycles
binding isa transporter

lipopolysaccharide binding activity isa lipopolysaccharide transporter activity

transporter ise binding

sphingolipid transporter activity isa sphingolipid binding activity

oxygen transporter activity isa oxygen binding activity

phosphatidylinositol transporter activity ise phosphatidylinositol binding activity
phospholipid transporter activity isa phospholipid binding activity

modification isa processing
RNA modification isa RNA processing
mRNA modification isa mRNA processing

processing is¢ modification

protein processing isa protein modification

3.4 Analysis of the Inferences

The rules also result in some problematic inferences. For instance, the right-branching
preference in the Insertion rule when applied to “adult male behavior isa adult behavior”
results in the inference “male behavior isa behavior”. This inference is not incorrect, but
intuitively one would prefer the inference of “adult male ¢sa male” from this source relation.
This could perhaps be modeled through the incorporation of statistical parsing or, more
straightforwardly, reference to the relative mutual information of the alternative phrasal
analyses. We have not yet tried this.

The Parallel rule sometimes leads to inferences that, independently, seem quite odd.
For instance, application of the rule to “maternal behavior isa reproductive behavior” and
“mating behavior isa reproductive behavior” results in “maternal isa reproductive” and
“mating isa reproductive”. The inferred relations are rather forced and difficult to interpret.
What seems to be going on in this case is (a) there is a context-dependent interpretation
of the relationship between the adjective and the noun in these two phrases which is lost
when the nominal context is removed (where the parent/child relation expresses something
like “maternal behavior” isa “behavior in support of successful reproduction”) and (b) the
1sa relation does not adequately capture the relation between the parent and the child — in
what sense is a maternal behavior really a reproductive behavior?

The lexical semantic network which is generated via these rules from the GO can be used
to augment the GO itself, in order to extend the GO from a collection of phrasal relations to
a more detailed ontology. Along the way, this approach will help to validate the information
in the GO by highlighting instances where the isa relation may be insufficient, or even by
identifying cases where there might be inconsistencies in the GO through recognition of a
cycle in the lexical semantic network.

We did in fact find two such cycles in our inferred network. Looking for 2-cycles only, we
found both “transporter isa binding” and “binding ¢sa transporter”, as well as “modification
isa processing” and “processing isa modification”. Tracing these back to the source relations
of these inferences in the GO, we find the relations as indicated in Table 3. Clearly there
is some inconsistency here in the use of these terms, if not outright errors in the GO itself.
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Figure 6: Path to “protein processing” in the GO

It would seem, for instance, that based on the generic sense in English of “processing”,
“protein processing” should be more abstract than “protein modification” and that therefore
the relation should exist in the opposite direction in the GO. However, looking at the path
to this relation in the GO as represented in Figure 6, it is possible that “processing” in
this instance is intended to refer to a specific type of protein modification distinguished in
some important, but unspecified, way from the other kinds of protein modification. The
problem is that if the word is being used in a way which violates our natural expectations,
this usage should be specifically defined and differentiated from the expected meaning. This
observation is in line with Schulze-Kremer [7]’s proposal to explicitly specify the criteria
for subclassifying concepts in an ontology. The GO does not even provide a definition for
the “protein processing” term; what the cycle we have found indicates is that there is some
ambiguity in the use of the word “processing” which needs to be resolved.

4 Application

Ultimately, our goal is to incorporate these lexical relations into a NLP system which aims to
extract regulatory relationships from Medline abstracts [6]. In the lexicon used by the NLP
system, we can define mappings of ontological categories from GO to lexical items. With
this in place, lexical items can be considered in the far richer semantic context provided by
the GO. This is achieved by incorporating subsumption checking into the patterns which
drive the information extraction. For instance, a rule may require that a particular argu-
ment be some type of protein metabolism. With reference to the GO, and the additional
lexical semantic relations we have induced, we can verify that this holds for a given word or
phrase identified in the text. These types of constraints allow us to more accurately identify
particular relationships.

As an example, in our NLP system we may wish to identify all sentences in which a
protein is acting metabolically. Rather than spelling out all the different kinds of metabolic
function, we can draw on the structure of the ontology. For instance, we might define a
pattern [PROTEIN serves a METABOLISM function]|, where we verify that the word preceding
function maps to a node in the ontology subsumed by metabolism. The term biosynthetic, for
example, maps to the ontology node biosynthesis, that is in turn subsumed by metabolism. So
the sentence “The lipoprotein serves a biosynthetic function” could be identified as satisfying
the more general pattern, although it mentions a lipoprotein rather than a protein, and
biosynthesis rather than metabolism.

5 Validating and Augmenting the GO

As we have seen, the application of the simple inference rules to the GO results in a network
which facilitates validation of the GO itself. Cycles in the inferred network indicate an



inconsistency in the usage of a term; questionable or invalid relations suggest the need for
examination of the source relation in the GO.

Some of the questionable inferred relations could of course be due to the simplicity of the
inference rules; as suggested above, the right-grouping heuristic of the insertion rule requires
refinement with more sophisticated structural analysis of the GO terms. Similarly, there
are conventions in the structure of GO terms that are not taken into consideration in the
inference rules, such as the use of a colon (“:”) to indicate molecules interacting in a reaction
in specific ways. The rules should be refined to take such conventions into consideration;
doing so requires the semantics of the conventions to be clear.

The approach we have outlined is based on examining local, parent-child relations in the
GO. Ogren et al [5], in contrast, search for systematic repetitions of phrases (substrings)
across all GO terms, not just locally in individual relations, in order to identify phrases
encoding specific semantic relations. These derivational phrases can provide two types of
semantic groundings for concepts — the phrases can have a specific, consistent meaning that
should be explicitly characterized, and the phrases can impose semantic constraints on the
terms they modify. Ogren et al show that such constraints can be inferred by the positional
distribution of the modified terms. This type of inference cannot be made locally, and is
likely to be extremely useful in the context of natural language processing, which often
depends on semantic constraints to resolve ambiguities.

Ogren et al [5] show how identification of derivational phrases can help uncover terms
which are candidates to be GO terms, but are not. They identified 108 candidate terms on
this basis. Our approach identified 3,270 new candidate terms, as well as providing each
of these terms with at least one ontological relation as a starting point for providing the
appropriate semantic grounding of the terms. However, many of our candidate terms are of
a different nature than the terms currently in the GO — concepts like “enzyme” and “RNA”
are general biological concepts and not concepts primarily extending from biological process,
molecular function, or cellular composition. It may not be appropriate to consider adding
these to the GO itself — but identifying those concepts and relations that they participate
in is useful for meeting the need of constructing general knowledge resources for the biology
domain. Such a resource would be valuable not only in support of natural language processing
applications in the biology domain, but also to provide tools to assist in the validation of the
GO (through identification of inconsistencies in term usage) and the automatic augmentation
of the GO (e.g. to support abstraction of existing or new terms on the basis of known
semantic relations, as suggested by Williams and Andersen [10]).

6 Conclusion and Future Work

In this work we have investigated the potential for exploiting the Gene Ontology, an ontology
in the biology domain, as a source of the kind of lexical semantic knowledge. We have shown
that the application of some simple inference rules to the parent/child pairs in the GO
can result in the creation of a semantic network that captures core lexical relations for the
domain, and can be used to enable generalization in our information extraction system. The
GO itself could be augmented, and in turn validated, with these lexical relations.

There are several tasks that remain as future work, including more formal evaluation of
the induced lexical semantic network by domain experts and further analysis of the structure



of the network, including the nodes with multiple parents that were stripped out through
the network reduction we performed. We would like to refine the inference rules used, and
we would like to try an incremental reasoning strategy where we apply the inference rules
to the induced network, to see what second-order inferences can be drawn. We would also
like to try integrating the lexical semantic network with the GO itself, to further explore
the possibility of cycles and inconsistencies which might be exposed in so doing. Finally,
we wish to explore the integration of the local semantic relations we have inferred with the
globally-derived inferences about semantic constraints and semantic function as reported by
Ogren et al [5]. The integration of these two complementary views of the lexical semantics of
the Gene Ontology may prove to be the most effective way of exploiting all of the knowledge
existing implicitly in the GO.
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